If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=510
We move all terms to the left:
6x^2-(510)=0
a = 6; b = 0; c = -510;
Δ = b2-4ac
Δ = 02-4·6·(-510)
Δ = 12240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12240}=\sqrt{144*85}=\sqrt{144}*\sqrt{85}=12\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{85}}{2*6}=\frac{0-12\sqrt{85}}{12} =-\frac{12\sqrt{85}}{12} =-\sqrt{85} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{85}}{2*6}=\frac{0+12\sqrt{85}}{12} =\frac{12\sqrt{85}}{12} =\sqrt{85} $
| 4x(x)=200 | | 0=-3x+0 | | 4xxx=200 | | −3x^2+x=−35 | | 2x+14=4x-10 | | 55+74n=5531 | | 15+4x+45=180 | | 13-5(x+12)+10x=87 | | 11=x/110 | | 10=i+7 | | 6+8b=-10 | | -1/2=4-3x/5=1/4 | | z-15=4 | | 4x+10=75 | | x+3x+10=75 | | x-123=145 | | e+14=28 | | (-3x-1)=(4x-7) | | 1+p+8p=10 | | -2+9m=43 | | 12-7w+9(2w-4)=141 | | 2.4x+3.4=-5.72 | | 5(u-8)=-2u-26 | | -8v+24=-2(v+6) | | –22+–4w=–94 | | 4(u+8)=-7u+10 | | 7w+9(2w-4)=141 | | w/7=-34 | | 4x=-288 | | (3x+12)54°=180 | | 40x+16.5x=378.55 | | 7X2-14x-21=0 |